
59

Distribution Fitting for Zero Day Vulnerability Life Spans: A Quantitative assessment
with reference to Weibull Distribution

C. Shabana Janani
Park Global School of Business Excellence,

Coimbatore

Abstract. Vulnerability in software is one of the key metrics in dening software reliability. As
this vulnerability can be discovered by any user of a software, it becomes critical to identify who
has discovered the vulnerability and how quick it has to be patched so as to minimize the risk. The
risk is heavier when the vulnerability is a Zero Day Vulnerability. Many probabilistic models
have been developed to study the attackers' behavior in exploiting vulnerability and the duration
taken by vendors in patching vulnerability. As such these models assume the basic underlying
data distribution in varied category. This research study aims to t in one such distribution to the
life spans of Zero Day Vulnerabilities prevalent in web browsers. Since the life span
characteristics matched the characteristics of Weibull distribution, an attempt is made to check if
the life span data distribution follows a Weibull distribution. Data were collected from the Zero
Day Initiative of HP. An analysis verifying the properties of Weibull was run for the data
collected. Finally it was found that the life span data of Zero Day vulnerabilities followed a
Weibull Distribution.

Keywords: Software vulnerability, Zero Day vulnerability, Weibull distribution

Nobody intentionally develops software with a bug. However, bug free software is beyond the
scope of any software developer. And be it a thousand dollar Hackathon or a multi-million dollar
(black) market for an exploit code, everyone is basically interested in one thing, “The
Vulnerability” in the software. These software vulnerabilities can cause serious economic
damages (Kannan & Telang, 2005). End users lose money and valuable information. Software
vendors lose their market share as software system reliability is dened as the number of failures
(vulnerabilities) during a given time period (Rescorla,2005). Vulnerabilities (software
aws/bugs) are typically created by accident as a result of coding mistake, often involving
mismanagement of memory (Frei et al., 2009). However this is just a comprehensive view in
vulnerability creation. This aw as we call it as software vulnerability poses little threat as long as
it is discovered by a safer hand. But the probability of the discovery by someone who genuinely
tries to x it is much less. Most of the time it is exploited by hackers, whose full time job may be is
to locate a security hole in software and inject malicious contents or hack the end users' system.
These exploit codes sold in black market can fetch them a hefty pay than being sold to the vendor
of the software. And the ultimate risk bearer is the end user. In one of the Google run Hackathon, a
team of hackers from security rm Vupen were able to discover security bugs in the famous
Google Chrome. Though each hacker was paid $60,000 to share every details of the exploit to x
the vulnerability discovered, Vupen's CEO openly acknowledged that Vupen never had the
intention of sharing it with Google and had better markets for the vulnerability (Greenberg, 2012).
In spite of all these, however, if a vulnerability happens to fall in the safer hands (hopefully
without any rediscovery by hackers), vendors take their own time xing up these vulnerabilities.
These xes, called patches, are additional pieces of code that are developed to x the vulnerability
in the software (Mell et al. 2005). Though the cost of developing the patches is less compared to
the cost of developing the software, a number of vulnerabilities considerably reduce the reliability
of the software. So as long as the vulnerability is not published or disclosed in public forum, the
time to patch the vulnerability by a vendor is very long.

Great Lakes Herald Vol. 8, No. 1, March 2014

60

McQueen et al. (2011) in a study of the life cycle of vulnerabilities between 2009 and 2011,
specied that on an average, vulnerability is kept unpublished (since they are not patched) for
about 197 days. There were times when attacks came 6 months after the vulnerability was
published (with patch), e.g., Nimba and Code Red (Applewhite, 2004). But unfortunately
technology has pushed us into a world where we can anticipate an attack right immediately after
the software is commercialized, e.g., iOS7 Control Center Vulnerability (Greenberg, 2013). So
a study of vulnerability is always an ongoing and special process for various security
researchers.

LITERATURE REVIEW

Vulnerability in software is “an instance of a mistake in the specication, development or
conguration of software such that its execution can violate the explicit or implicit security
policy” (Anderson & Moore, 2006). A defect is that which enables an attacker to bypass security
measures (Schultz et al. 1990). Shepherd (2003) denes vulnerability as a aw in the logical
operation of a product that may leave the product in an undesirable state, especially allowing
unauthorized access, elevating privileges or denying the services of the software. The RFC
4949 Internet Security Glossary explains vulnerability as “a aw or weakness in a system's
design, implementation, or operation and management that could be exploited to violate the
system's security policy”. Microsoft denes security vulnerability as “a aw in a product that
makes it infeasible—even when using the product properly—to prevent an attacker from
usurping privileges on the user's system, regulating its operation, compromising data on it, or
assuming ungranted trust”

Vulnerability Discovery

 The motivation behind the discovering a vulnerability can be personal or competitive
(Cecini et al. 2005). These vulnerabilities are identied either by someone, who reports it
directly to the vendor or in public forums like Secunia, Bugtraq or by any malicious hacker who
tries to exploit the vulnerability. These two potential scenarios are described as White Hat
Discovery (WHD) and Black Hat Discovery (BHD). Vulnerability discovered with an intention
of no exploits is WHD, where the discoverer is usually a freelance security professional, or a
security researcher working for the vendor. The vulnerability is then notied to the vendor with
an intention of preventing further exploits. The vendor in turn releases a patch along with the
vulnerability details (Rescorla, 2005). In BHD, the vulnerability is discovered by a hacker or a
script kiddie (a non-technical hacker) with an intention to exploit it. Usually in this scenario, the
end users of the software as well as the vendors are unaware of the vulnerability, while a limited
pool of in-the-know attackers keep exploiting the vulnerability. As any disclosure of
information about vulnerability may lead to further exploits until it is patched, the question of
how the knowledge about the vulnerability has to be disclosed to the public has always been a
debated issue in Information Security (Secure Business Quarterly, 2002). As the number of
vulnerabilities in software is a key metric for software reliability and nding them is
competitive, a tricky ethical framework of how vulnerability has to be disclosed is required
(Cecini et al., 2005).

Great Lakes Herald Vol. 8, No. 1, March 2014

61

Vulnerability Disclosure Policies

 Disclosure debates range from immediate public disclosure of the vulnerability by the
discoverer to full vendor disclosure/responsible disclosure until a patch is available.
Proponents, who favor immediate public disclosure, claim that such disclosures force the
vendors to release the patch quickly (Leyden, 2002). In addition, it cautions users to protect
themselves by disabling the affected software (or related functionality) before an exploit is
issued (Cencini et al., 2005). The more the end user knows about the problem the better they can
defend against it (Ragan, 2010). However, the immediate public disclosure policy fails to
consider the impact of the duration gap in which the vulnerability is publicly available without a
patch. Studies have also shown that there is an upswing in intrusions using a given security
weakness once it has been publicly disclosed (Reid, 2003). It is widely believed that the cost of
developing or acquiring exploit tools and implicitly the frequency of attacks on hosts depends
largely on how much information about the vulnerability is publicly known (Seltzer, 2004). On
the other hand, proponents favoring full vendor disclosure, hope that it may not aggravate
exploits, since limited information about the vulnerability will be available at any given time.
However, the duration required to release a patch after discovery is a business decision and is
directly under the control of vendors (McQueen et al., 2011). As the vendor cannot be forced to
develop a x, some reported vulnerabilities have gone unxed or have been xed after a long
delay (Schneier, 2001). So as long as the vendor is not committed enough to develop a patch at
the earliest, full vendor disclosure still may put the public at risk (Cavusoglu et al., 2007). In any
case, there is a time duration in which the vulnerability can be rediscovered either by a WHD or
BHD.
 The concept of Full Disclosure and Non-Disclosure was a heavily debated issue until a
policy of Responsible Disclosure (Partial Disclosure) was introduced. A responsible disclosure
is a policy in which information about software vulnerabilities are disclosed in a limited
manner, so that it puts users at the least risk (Cecini et al. 2005). Responsible Vulnerability
Disclosure stresses on how the knowledge about the vulnerability has to be shared in
appropriate times and through appropriate channels (Cavusoglu et al. 2007). When a
vulnerability is discovered, the discoverer (WHD) informs the software vendor and if the
vendor is not responsive (usually for a given grace period of time), the discoverer may then go to
a community/public forums and proceed with full disclosure of the vulnerability (Shepherd,
2003). This Grace Period is the amount of time the discoverer/security researcher allots to the
vendor for providing a x/patch, after which the researcher may independently announce the
vulnerability (McQueen et al. 2011). This grace period can be best understood with the help of
vulnerability life cycle events.

Arbaugh et al., Vulnerability Life Cycle Model (2000)

 A vendor releases a product at time '0'. At period 't0' a vulnerability is discovered and
notied to vendor. This discovery is usually done by WHD, who informs to public forum like
CERT/CC (Computer Emergency Readiness Team -- Coordination Center). CERT then takes
the responsibility of contacting the vendor and giving a grace period of (T+t0) to x the
vulnerability (usually 45 days from the date of informing the vendor in case of CERT). And say
the vendor releases the patch at (τ+t0). The period (t0+s) is the time period during which the
vulnerability can be rediscovered by attackers to exploit it.

Great Lakes Herald Vol. 8, No. 1, March 2014

62

McQueen et al., Vulnerability Life Cycle Events (2011)

 This model explains the cost of vulnerability as the sum of, the cost for the vendor to create a
patch, the cost to mitigate the vulnerability by the end user, and the total losses from its exploitation
through various phases of discovery. Similar to Arbaugh et al., this model identies the phases as
discovery, exploitation, vendor notication, disclosure and release of patch. Since the initial
discovery cannot be rmly ascertained (as it may have been rediscovered by exploiters and kept
secret), this model assumes three basic events in a vulnerability lifecycle for which the reported
period can be dependably veried: Vendor notication period, disclosure, and release of patch. The
grace period in this model is the period between vendor notication and disclosure. Consequently, a
number of rediscoveries (the same vulnerability being discovered by different people within a
period time) of the vulnerability is possible during this period.

 This grace period is more crucial as well as critical since the software remains unpatched,
exposing itself to the windows of exploitation. The vulnerability during this period is called a “Zero
Day Vulnerability” and the duration during which the vulnerability remains discovered but yet to be
published is the life span of a Zero Day Vulnerability. Though there is no formal denition for a Zero
Day vulnerability, McQueen et al. (2009) dened it as the vulnerability deployed in software, that
has been discovered at least by one person but has not yet been publicly announced or patched. A
zero day attack is more vulnerable as it cannot be detected by an antivirus product through signature
based screening (Bilge & Dumitras, 2012), making it further easy for BHD.

Need For the Study

 Analyzing Zero Day attacks is usually complicated as the data about the attacks are generally not
available unless an attack is discovered. Many studies have focused on the rate of change of the
number of zero day vulnerabilities over a period (Shahzad et al., 2000; McQueen et al., 2011;
Arbaugh et al., 2000) and life span of zero day vulnerabilities (Bilge & Dumitras, 2012 & MCQueen
et al., 2009). High-end researches have focused on intrusion detections on various software
categories (Qualys Inc, 2009; Symantec Corp, 2012). Studies also focused on comparing the
vulnerabilities of different software vendors (Frei et al., 2009; Frei, 2011). Each study has
contributed a model in dening its own objective. Although any modeling starts with the basic
assumption that vulnerability discovery is a stochastic process, a further analysis of the distribution
of time/duration of the discovery or the patch for vulnerability becomes crucial to build a model.
Because, when the assumed data distribution does not hold correct, the developed probabilistic
model may not be reliable. Most of the vulnerability discovery models and Zero day life span models
assume the basic time to discover or patch the vulnerability in terms of wide varieties of
distributions. McQueen et al. (2009) modeled the life span of zero day vulnerability with a Log-
Normal Distribution. Rescorla (2005) assumes a Poisson distribution for the time to discover the
vulnerability. Still many studies follow the basic assumption of Gaussian distribution for modeling
life spans of vulnerabilities. In spite of these assumed distributions, other distribution models like
Exponential and Weibull are also of signicant interest in studying the time distribution. This paper
attempts to t a Weibull distribution model for the life span of Zero Day Vulnerabilities of various
web browsers.

Great Lakes Herald

Figure 1– Life cycle of software vulnerability – Arbaugh Model

Vol. 8, No. 1, March 2014

63

DATA & DISTRIBUTION FITTING OF ZERO DAY VULNERABILITY LIFE SPAN

 Studies on Zero day attacks and vulnerabilities are usually carried out as a post-mortem
analysis as vulnerabilities cannot be observed in lab experiments (Bilge & Dumitras, 2012). The
Common Vulnerabilities & Exposure Consortium maintains an extensive database of all
discovered vulnerabilities so far, with unique CVE id (Common Vulnerability Exposure) and a
CVSS (Common Vulnerability Scoring System) score. This is the most commonly used
database for many academic and institutional researches. While the CVE database sometimes
indicates when vulnerabilities were reported to vendors, it does not give information about
when vulnerability was actually discovered by a WHD or BHD (Bilge & Dumitras, 2012).
Hence it is highly unlikely that an exact date of discovery would be available in any public
database. A study on Zero Day vulnerability by McQueen et al. (2009) uses the data from “Zero
Day Initiative” (of HP Tipping Point, a security research program acting as a broker between
discoverer and vendor). Although it is a conservative estimate, many studies consider the data to
be the closest possible estimate for discovery dates. ZDI gives a grace period of 6 months.
 To characterize the Weibull distribution, I took into analysis the life spans of 175 Zero Day
vulnerabilities, with special reference to various Web Browsers from 2011 to September 2013,
from HP's Zero Day Initiative database. The data available in ZDI consists of the date when the
vulnerability was reported to the vendor and the date when it was published. Assuming the date
of reporting as the closest possible date of discovery, I calculated the Life Span of Zero Day
vulnerabilities of web browser.
 A Weibull distribution is a best t when the data is a life data especially with reference to
failure time. Also, as the scope of the Weibull covers non-zero time origin and unknown ages of
units of interest, I nd it best describes the characteristics of vulnerability discovery process.
Though discovery of vulnerability is not a complete failure of software, its reliability is
drastically reduced whenever vulnerability is discovered. And because of the inability to nd
the exact date of software vulnerability discovery and due to further re-discoveries, a Weibull
may describe the life span distribution of vulnerabilities better than any other distributions.
Also, unlike normal curve which tries to t data over a bell shaped curve, Weibull ts or models
a distribution according to the data. For this study, I consider a 2-parameter Weibull distribution,
which is characterized by slope and characteristic life (mean time to fail) and is best suitable for
small sample sizes. The advantage of Weibull distribution is that it adequately denes extreme
values that deviate from the median of the distribution.

Weibull distribution function is given as
F(x) = 1- exp {-(x/α)β }

Where α is the Scale parameter that characterizes the life of the distribution and β is the Shape
parameter which is equivalent to the slope parameter of a linear trend.

In order to get a brief understanding of the underlying data, I used the descriptive statistics of the
life spans of Zero Day vulnerability data set (Table 1). It is clear that the data did not follow a
normal distribution. The data is right skewed with skewness 1.171. This is further illustrated
with a histogram in Figure 2.

Great Lakes Herald Vol. 8, No. 1, March 2014

64

Table 1 - Descriptives of the Life Spans of Zero Day Vulnerabilities

Days

 Statistics Std Error
Mean 106.33 4.07
Median 95
Std Dev 53.93

Skewness 1.17 .18
Kurtosis 2.09 .36

Figure 2– Histogram of Zero Day Life Spans

A Weibull is characterized by the following properties.
 1. The Scale parameter of the life span distribution should lie approximately at the 63rd
 percentile of the population/sample.
 2. The median rank of the distribution is given by Px= (Rank(x)-0.3)/(n+0.4). If the
 distribution is Weibull then ln(ln(1/(1-Px))) against ln(x) should give a linear trend.
 3. And the slope of the linear trend in (2) should be approximately equal to the raw Shape
 parameter β of Weibull.
 4. The linear trend equation of (2) produces α and β closer to the raw values of scale and
 shape parameter obtained from (1) and (3)
 5. Weibull becomes exponential when shape parameter β=1. Therefore a new
 transformation Y=Xβ , will be an exponential distribution with mean = αβ.
 6. The Weibull probability versus the life span data should be linear.
 7. And the slope of the linear trend in (6) should be unity.

Applying the Weibull properties discussed above to the life span of Zero Day Web Browser
vulnerabilities, we can interpret the following:

 I. After arranging the data in ascending order and ranking them, the 63rd percentile life
 spans' rank is calculated as 0.63 *n= 0.63 * 175 = 110.25
 The life span value corresponding to the 63rd percentile at 110.25th rank is approximately
 108 days. This gives us the rough estimate of the Weibull's characteristic life or scale
 parameter α.
 II. Calculating the median rank Px for the data points, a regression is run with the log
 transformed values for analyzing the linear trend. The regression t (Figure 3) shows an
 almost linear trend with a high coefcient of determination 95% (Table 2). The linear
 trend is also signicant with slope =2.13 and intercept = -10.22 (Table 3).

Great Lakes Herald Vol. 8, No. 1, March 2014

65

Table 2 - Regression Statistics of the log
transformed values
Multiple R 0.98
R Square 0.95

Adjusted R Square 0.95
Standard Error 0.27

Table 3- Regression Output
Predictors Coefficients Standard Error t Stat P- Value
Intercept -10.22 0.17 60.96 0.00

2.20 2.13 0.04 57.94 0.00

 III. The slope of log transformed linear trend, 2.12 will be the shape parameter β of the
 Weibull distribution of the life span data.
 IV. The scale parameter α is given as α= exp{- (Intercept/Slope)}
 = exp{-(-10.22/2.12)} = 124.05

 The raw value of the slope is calculated using the general slope formula and the value is 2.12.
 As suggested in (1) and (3), we nd that the rough estimates of (α,β) i.e., (108,2.12) is closer
 to the formal estimates (124, 2.13) calculated using the trend equation. The variation in the
 scale parameter is due to the fact that means are affected by the extreme values in the data set.
 A few Zero day vulnerabilities had lifetime that extended even to 285 days. However,
 removing the extremities made 'α' move closer to the raw characteristic life value at 114 days.
 The extremities were removed under the assumption that the software might have been in its
 obsolete phase, during which the vendors' preference is usually towards developing a new
 product version of the earlier software.
V. Also by assessing the exponentiality of Y, as Y=X2.1, for all the ZD vulnerability life spans,
 we nd that the mean of the exponential distribution (calculated using arithmetic mean)
 26342.8 is nearer to the exponential mean αβ = (124)2.12 = 27419.15, estimated using the
 regression line.
VI. Comparison of estimated Weibull probability with actual life span probability: The
 Weibull probability xi is then calculated from the Weibull distribution function

Great Lakes Herald Vol. 8, No. 1, March 2014

66

 F(x) = Px = 1- exp { -(xi/α)β }
 Therefore xi = {-αβ ln(1-Px)}1/β
 Regression is run for the calculated Weibull probability against the corresponding life span
 data. The regression line (Figure 4) shows an upward linear trend thus satisfying (6).

VII. Finally running a linear trend line for Weibull probability versus actual life span data gives
 us the following regression line.

 Weibull probability = 1.093 + (.990) Weibull Sample (Table 5)

 It is clear that the slope of the regression line covers unity as required by (7) and a high index
 of t 93.7% (Table 4) shows that Zero Day Vulnerability Life span follows a Weibull
 distribution.

Table 4- Regression Statistics

Multiple R 0.97
R Square 0.94
Adjusted R Square 0.94
Standard Error 14.06

Table 5 – Regession Output for Weibull Probability
 Coefficients Standard Error t Stat P-value

Intercept 1.09 2.38 0.45 0.64

9 0.99 0.02 49.95 0.00

Great Lakes Herald Vol. 8, No. 1, March 2014

67

CONCLUSION & FUTURE WORK

 Thus, as the life span data conrms to the properties of Weibull distribution, it can be
reasonably inferred that the life span of Zero Day vulnerabilities of web browsers closely follows
a Weibull distribution with shape parameter 2.12 and characteristic life 124 days. However, while
working with the log transformed data of life span, a QQ plot of the same showed that the
distribution t Poisson distribution much more adequately. Hence, further research can be done to
check if the data might follow a Poisson distribution. Also, as it's concluded that the distribution is
Weibull, it may be further developed to t a distribution model appropriately verifying the shape
and scale parameter. One of the limitations of the study is that, the data for Zero Day vulnerability
was available only from 2011 from Zero Day Initiative. So, the sample may not adequately
represent the population and the distribution may vary for a different time period or a different
category of software vulnerability.

Acknowledgement

 This research would not have been possible without the published advisories collected from
www.zerodayinitiative.com. I would thank HP's Zero Day Initiative and DVLabs for the data
available for public access about vulnerability disclosures.

Great Lakes Herald Vol. 8, No. 1, March 2014

68

REFERENCES

Alhazmi,H., Whan Woo, S. & Malaiya, Y.K. (2008). Security Vulnerability Categories in major
 Software Systems. http://www.cs.colostate.edu/~malaiya/pub/CNIS-547-097.pdf
Anderson,R. & Moore, T. (2006). The Economics of Information Security. In Science, Vol 314.
 No. 5799
Applewhite, A. (2004). Whose Bug is it Anyway? The Battle over handling software Flaws.
 IEEE Software, 21(2).
Arbaugh, W.A., Fithen, W.L. & McHugh,J. (2000). Windows of Vulnerability: A Case Study
 Analysis. IEEE Computer. 33. (52-59)
Arora,A., Nandkumar,A. & Telang, R. (2006). Does Information Security attack frequency
 increase with Vulnerability Disclosure? An Empirical Analysis. Springer Science.
Bilge, L., & Dumitras, T. (2012). Before We Knew it- An Empirical Study of Zero Day Attacks in
 the Real World. 2012 ACM Conference on Computer & Communication Security
Cavusoglu, H., Cavusoglu, H. & Raghunathan, S. (2007). Efciency of Vulnerability Disclosure
 Mechanisms to Disseminate Vulnerability Knowledge. IEEE Transactions on Software
 Engineering.
Cencini,A., Yu,K. & Chan,T. (2005). Software Vulnerabilities: Full-, Responsible- and Non-
 Disclosure.
 http://courses.cs.washington.edu/courses/csep590/05au/whitepaper_turnin/software_
 vulnerabil ities_by_cencini_yu_chan.pdf
Culp, S. (2000). Denition of a Security Vulnerability. Microsoft TechNet.
Frei, S. (2011). End-Point Security Failures, Insight Gained from Secunia PSI Scans. Predic
 Workshop
Frei, S., Schatzmann, D., Plattner, B., & Trammel, B. (2009). Modelling the security ecosystem-
 The Dynamics of (in) security.
 http://www.techzoom.net/papers/weis_security_ecosystem_2009.pdf/
Greenberg, Andy. (2012). Shopping for Zero-Days:A price list for the hackers' secret software
 exploits. www.forbes.com.
Greenberg, Andy. (2013). Another iOS7 bug lets anyone make calls from locke iphonesand this
 one has no quick x. www.forbes.com.
HP Enterprise Security. (2012). HP Cyber Risk Report, 2012.
Internet Engineering TaskForce. RFC 4949 Internet Security Glossary.
Kannan, Karthik & Telang, Rahul (2005, May). Market for software vulnerabilties? Think
 Again. Management Science, ABI/INFORM complete (pp 726-740)
Leyden, J. (2002). Show us the Bugs - Users want Full Disclosure. The Register.
McQueen, M. A., McQueen, T.A., Boyer, W.F. & Chafn, M.R. (2009). Empirical Estimates
 and Observations of 0 Day Vulnerabilities. Proceedings of 42nd Hawaii International
 Conference on System Sciences.
McQueen, M., Wright, J.L., & Wellman,L. (2011). Are Vulnerability Dusclosure Deadlines
 Justied? Third International Workshop on Security Measurements and Metrics, 2011,
 The IEEE Computer Society
Mell, P., Bergeron, T., & Henning, D. (2005). Creating a patch and Vulnerability Management
 Program. NIST Special publication, SP 800-40V2.
Qualys Inc. (2009). The Laws of Vulnerability 2.0.
Rangan, S. (2010). The New Era of Vulnerability Disclosure- A Brief Chat with HD Moore. The
 Tech Herald.
Rescorla, E. (2005). Is nding security holes a good idea? Economics of Information Security, The
 IEEE Computer Society.
Romeu, J.L. Empirical Assessment of Weibull Distribution. Selected Topics in Assurance Related
 Technologies, 10(3).
Schneir, B. (2001). Bug Secrecy Vs Full Disclosure. ZDNet Tech Update.

Great Lakes Herald Vol. 8, No. 1, March 2014

69

Schultz, E.E., Brown, D.S. & Longstaff, L.T.A. (1990). Responding to Computer Security
 Incidents. Lawrence Livemore National Laboratory Technical Report, NTIS Issue No. 9102.
Secure Business Quarterly. (2002). Special Issue- Vulnerability Disclosure, 2.
Seltzer, L. (2004). How should researchers handle exploit code? E- Weel, April, 2004.
Shahzad, M., Shaq, M.Z. & Liu, A.X. (2012). A Large Scale Exploratory Analysis of Software
 Vulnerability Life Cycles. Proceedings of 2012 International Conference on Software
 Engineering
Shepherd, S. (2003). Vulnerability Disclosure: How do we dene Responsible Disclosure?. Part
 of SANS Institute InfoSec Reading Room.
Skibell, R. (2003). The Phenomenon of Insecure Software in a Security Focused World. Journal
 of Technology, Law & Policy.
Symantec Corporation. (2012). Symantec Internet Security Threat Report.
Zheng, C., Zhang, Y., Sun, Y. & Liu, Q. (2011). IVDA: International Vulnerability Database
 Alliance. 2011 Second Worldwide Cyber Security Summit.

Great Lakes Herald Vol. 8, No. 1, March 2014

